Last E\&M Homework of the Year!

Homework \#11 (10 points) - Show all work on the following problems:

Problem 1 (4 points): In reference frame S, a static uniform line charge λ extends along the z -axis.

2a (1 point). Write the electric field in S, in Cartesian coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
2b (1 point). Find the electric field in a frame S^{\prime} that moves with speed u in the x-direction with respect to S, in terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

2c (1 point). Express your answer in terms of the S^{\prime} coordinates $x^{\prime}, y^{\prime}, z^{\prime}$.
2d (1point). Express your answer in terms of a vector from the present location of the wire, and the angle θ between that vector and a unit vector in the x^{\prime} direction. Is the field still radially outward from the instantaneous location of the wire?

Problem 2 (1 point): Show that the dot product between the electric and magnetic fields is invariant.

Problem 3 (3 points): Consider an electromagnetic plane wave traveling in the x direction, polarized in the y direction, with amplitude E_{0} and angular frequency ω in frame S. Use the real forms of E and B for this problem.

3a (2 points): Find the electric and magnetic fields in a frame S^{\prime} moving with speed u in the x-direction with respect to frame S. Write the resulting fields in the S^{\prime} coordinates $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$.
$\mathbf{3 b}$ (1 point): What is the frequency ω^{\prime} of the wave in S^{\prime} ? What is the wavelength λ^{\prime} of the wave in S^{\prime} ? What does this imply for the speed of the wave in S^{\prime} ?

Problem 4 (2 points): A straight wire along the z axis carries a uniform line charge λ, which moves at speed v in the +z direction. Construct the tensors $F^{\mu \nu}$ and $G^{\mu v}$, at the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}, 0,0)$.

